Action Recognition Using Local Spatio- Temporal Oriented Energy Features and Additive Kernel SVMs

نویسندگان

  • Jiangfeng Yang
  • Zheng Ma
چکیده

Spatio-temporal oriented energy features have been proved to be an efficient feature for action recognition. It has satisfied performance on most of public databases. However, the oriented energy features were used as holistic action features for template matching in many literatures. In the paper, we proposed an action representation based on local spatio-temporal oriented energy features, and multiple feature channels are built to convert the features to descriptors. Moreover, inspired by additive kernel Support Vector Machine can offer significant improvements in accuracy on a wide variety of tasks while having the same run-time. We proposed action classifiers based on additive kernels and tested our system on KTH human action dataset for its performance evaluation. The experimental result shows our system outperforms most of recent action classification systems. 

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A SURF-Based Spatio-Temporal Feature for Feature-Fusion-Based Action Recognition

In this paper, we propose a novel spatio-temporal feature which is useful for feature-fusion-based action recognition with Multiple Kernel Learning (MKL). The proposed spatio-temporal feature is based on moving SURF interest points grouped by Delaunay triangulation and on their motion over time. Since this local spatio-temporal feature has different characteristics from holistic appearance feat...

متن کامل

Spatio-Temporal Proximity Distribution Kernels for Action Recognition

Spatio-temporal local feature based bag of visual words algorithm (BOVW) has shown promising results in complex human action classification. However, one key disadvantage of BOVW is geometrical unconstraint, which makes it impossible to recognize different actions with the same features but different spatial-temporal distribution of these features. In this paper, we exploit the spatio-temporal ...

متن کامل

A time series kernel for action recognition

We address the problem of action recognition by describing actions as time series of frames and introduce a new kernel to compare their dynamical aspects. Action recognition in realistic videos has been successfully addressed using kernel methods like SVMs. Most existing approaches average local features over video volumes and compare the resulting vectors using kernels on bags of features. In ...

متن کامل

Mid-level features and spatio-temporal context for activity recognition

Local spatio-temporal features have been shown to be effective and robust in order to represent simple actions. However, for high level human activities with long-range motion or multiple interactive body parts and persons, the limitation of low-level features blows up because of their localness. This paper addresses the problem by suggesting a framework that computes mid-level features and tak...

متن کامل

Human Action Recognition Using Pyramid Vocabulary Tree

The bag-of-visual-words (BOVW) approaches are widely used in human action recognition. Usually, large vocabulary size of the BOVW is more discriminative for inter-class action classification while small one is more robust to noise and thus tolerant to the intra-class invariance. In this pape, we propose a pyramid vocabulary tree to model local spatio-temporal features, which can characterize th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014